COVID-19 Workspace Safety Plan – Lab Specific

This workspace safety plan will assist Principal Investigators who wish to continue or resume research activities in their lab. This plan will include a review of activities to be undertaken in the lab to ensure effective controls are in place to prevent the spread of COVID-19. Principal Investigators are responsible for ensuring this document reflects current government guidance and notices which can be found, along with information about UBC’s response to the pandemic at https://covid19.ubc.ca/.

This plan must be reviewed by your Local Safety Team, and signed by your Unit Head/Director. Once complete, the plan can be submitted with your online application to return to research.

Standard hours of return: Phase I occupancy 7 AM to 6 PM Monday to Friday.

Resources to Consult
The following guidance documents and resources were used in the development of this plan:

- Preventing Exposure
- Personal Protective Equipment
- Communications Resources
- Physical Distancing Guidelines
- UBC Research Resumption webpage
- WorksafeBC
- Reporting COVID-19 Exposure

Section #1: Lab information

Department: Materials Engineering
Faculty: Applied Science
Building(s): Brimacombe
Lab(s)/workspace(s): 141/141A

Introduction to Your Lab
Advanced Fibrous Materials Laboratory (AFML), led by Prof. Frank Ko, focusing on fibre form materials, studies the science and engineering of Nanofibre Technology and Textile Composites. AFML is composed of one PI, two research staff, two postdoctoral fellows, one visiting scholar, five graduate students (4 from APSC and 1 from SC), and one summer student, total of 12 members. AFML uses lab 141/141A, 142C (shared with CRN: Only one graduate student will access the lab to use a furnace, CRN will submit the Work Safety Form), 04 (shared with CFET: Prof. Servati will submit the Work Safety Form), High Head (Nano) spaces in the AMPEL building.

Section #2 - Risk Assessment

1. Lab/workspace Occupancy (under proposed COVID-19 operations)
List the number of people that will be present in your lab/workspace at the same time. List this by every room/lab/workspace you occupy.

Confirm that you have discussed each employee’s comfort level with returning to work and have
addressed any concerns, or will require further assistance in doing so. Any worker (staff, students, faculty, post docs, research associates, technicians and other research personnel) who has concerns about returning to work on campus can request an exemption to his/her supervisor.

List the users of the lab space and the approximate number of hours per week in the table.

| AFML has held multiple, online-lab-group meetings for the discussion of the lab reopening. Table 1 shows the lab member work schedule during the Phase I of research resumption. The lab 141 access priority is given to graduate students. Maddie and April need to work on-campus for their Master degree thesis projects, 5 days per week. Another graduate student, Dina, works remotely for paper work. The lab manager, Dr. Addie Bahi, and the senior lab member, Dr. Taesik Chae, need to stay in the building to monitor the lab activities regarding the COVID-19 regulations as well as to supervise and run multiple research projects (MITACTS, NSERC CHRP, NSERC NFRF-E, and other industry projects). The occupancy of our lab personnel during the Phase I period will not be more than 33% at any one time. Dr. Harishkumar, Katherine, co-supervised by Prof. Payman Servati, will spend most of their working hours in the 441 and 444 (CFET). Dr. Liting will work in the Forestry collaborating lab. The Chemistry collaborating graduate student, Diana, will not return to work in lab 141 during the Phase I period. Kosuke, a returning summer undergraduate student, will work remotely until he is permitted to work on-campus for Work Learn International Undergraduate Research. Eli, a visiting scholar, will also work remotely during the Phase I period. This work schedule is shared by all group members online and will be posted on the lab entrance door. The lab sign-in/out sheets will be placed beside the lab entrance door and monitored by a research scientist, Dr. Taesik Chae (Form 1). Some equipment, e.g. electrospinning machines, lyophilizer, and furnace, run overnight. For safety control purposes, the lab senior, Dr. Taesik Chae, is required to visit the lab after the occupancy hours. The visit is for safety-check-up for less than 10 minutes. One daily visit from Monday to Sunday is necessary to maintain the safe use of the equipment. All equipment used in lab 141 is booked through Google Calendar, and the member’s booking schedule is shared. This online booking system will minimize the conflict of use schedule.

Table 1. Lab 141 member work schedule during Phase I of research resumption.

<table>
<thead>
<tr>
<th># of hours/week (141)</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Work locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addie</td>
<td>30</td>
<td>141</td>
<td>141</td>
<td>141</td>
<td>141</td>
<td>141/04</td>
</tr>
<tr>
<td>Taesik</td>
<td>30</td>
<td>Forestry</td>
<td>Forestry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liting</td>
<td>0</td>
<td>441</td>
<td>444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harish</td>
<td>0</td>
<td>441/444</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eli</td>
<td>0</td>
<td>Remote working</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dina</td>
<td>0</td>
<td>Remote working</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katherine</td>
<td>0</td>
<td>CFET lab</td>
<td>441/444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maddie</td>
<td>25</td>
<td>141/444/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>25</td>
<td>141/04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diana</td>
<td>0</td>
<td>Chemistry lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosuke</td>
<td>0</td>
<td>Remote working</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max# of occupancy | 4 | 4 | 4 | 4 | 4 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary work locations are bolded.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab 141 daily users

<table>
<thead>
<tr>
<th>Addie</th>
<th>Addie</th>
<th>Addie</th>
<th>Addie</th>
<th>Addie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taesik</td>
<td>Taesik</td>
<td>Taesik</td>
<td>Taesik</td>
<td>Taesik</td>
</tr>
<tr>
<td>Maddie</td>
<td>Maddie</td>
<td>Maddie</td>
<td>Maddie</td>
<td>Maddie</td>
</tr>
</tbody>
</table>
COVID-19 Lab Safety Plan Brimacombe Template 2 June

• Lab 141/141 A: maximum occupancy of 4 at any time (lab 141A: maximum occupancy of 1 at any time)
• Lab occupancy before pandemic: 12 AFML members + 5 visitors from other labs = 17 personnel
• Lab occupancy percentage during Phase I: 23.5% (4 out 17)

Form 1. Sign-in/out form and sanitization checklist. Please complete this form every time you enter the lab 141 (example).

<table>
<thead>
<tr>
<th>Name</th>
<th>Supervisor</th>
<th>Date</th>
<th>Clock-in</th>
<th>Clock-out</th>
<th>Hand washing</th>
<th>Monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taesik</td>
<td>Frank Ko</td>
<td>06/01, 20</td>
<td>9:00</td>
<td>10:30</td>
<td>x</td>
<td>T.S</td>
</tr>
<tr>
<td>Taesik</td>
<td>Frank Ko</td>
<td>06/01, 20</td>
<td>10:50</td>
<td>12:30</td>
<td>x</td>
<td>T.S</td>
</tr>
<tr>
<td>Taesik</td>
<td>Frank Ko</td>
<td>06/01, 20</td>
<td>13:00</td>
<td>14:00</td>
<td>x</td>
<td>T.S</td>
</tr>
</tbody>
</table>

2. Hazard Identification
Describe what hazards exist in your lab/workspace; both research-related (chemicals, heavy machinery) and COVID-19-related (areas that require closer personal interaction, equipment/instruments that cannot maintain social distancing i.e. that require >1 person to operate)

Some equipment, e.g. electrospinning machines, lyophilizer, and furnace, run overnight. For safety control purposes, the lab senior, Dr. Taesik Chae, is required to visit the lab after the occupancy hours. The visit is for safety-check-up for less than 10 minutes. One daily visit from Monday to Sunday is necessary to maintain the safe use of the equipment. Maximum 4 personnel are permitted to work in lab 141 at any time, so the lab users can keep social distancing while performing wet lab work and using equipment.

3. Employee (HQP, research staff, other) Input/Involvement
Detail how you have involved frontline workers (HQP and research staff) and Joint Occupational Health and Safety Committees (JOHSC) and/or Local Safety Teams (LST) in identifying risks and protocols as part of this plan.

Describe how you will publish your plan (online, hardcopy) and otherwise communicate workplace health measures to employees. Guidelines from SRS are available here: https://srs.ubc.ca/covid-19/health-safety-covid-19/working-safely/

Our lab reopening plan must go through approval steps by the AMPEL Director, the Materials
Engineering Department Head, and the Faculty of Applied Science Associate Dean or Dean. Each stage of the approval will require the involvement of local safety committees. The final approved plan will be posted on our lab website and the entrance door of each lab space along with the VPRI Access Agreement (maximum occupancy number of personnel).

Section #3—Hazard Elimination or Physical Distancing

4. Scheduling
For those required or wanting to resume work at UBC, detail how you are rescheduling employees (e.g. shifted start/end times) in order to limit contact intensity at any given time at UBC.

Discuss your working alone procedures and how they will be adapted for this safety plan. Also describe how you will track those entering/leaving work i.e. sign in/sign out process

Table 1 shows the rescheduling of the AFML lab members in lab 141. A maximum 4 personnel in the lab 141 occupancy at any time of the day will limit contact intensity at any given time. This work schedule is shared by all group members through Google Spreadsheet and will be posted on the lab entrance door. The lab sign-in/out sheets will be placed beside the lab entrance door and monitored by a research scientist, Dr. Taesik Chae (Form 1). During daytime (Monday to Thursday), more than 2 people stay in the lab. The 4 lab users share their emergency contact information to report any uncommon circumstances each other. None is allowed to work after the occupancy hours. Everyone will exit the building before 6 PM.

5. Occupancy limits, floor space, and traffic flows
APSC recognizes that labs are dynamic environments and it may be challenging to adhere to physical distancing guidelines. Nonetheless, controls must be in place to keep personnel spaced at least 2m apart at all times. Clear communication of this to employees, monitoring of implementation, in addition to physical controls (signage) are needed.

As such: Using floor plans and/or photographs of your lab/workspace:
1) Identify and list the rooms and maximum occupancy for each workspace/area;
2) Illustrate a 2 metre radius circle around stationary workspaces/benches/instruments and common areas or equivalent approach to social distancing; and
3) Illustrate one-way directional traffic flows

- Lab 141/141A: maximum occupancy of 4 at any time
- Lab 141A: maximum occupancy of 1 at any time

Fig. 1 shows the floor map of lab 141/141A. The maximum occupancy of lab 141/141A is 4. Only one personnel out of the maximum 4 occupants will be permitted to enter the 141A room. The circles indicate the frequently used workspace by the lab occupants. Positioning at the circle locations will guarantee the physical distancing of at least 2 meters. The circle locations will be taped on the ground to make it clear for all users and keep them reminding the physical distancing.

The 4 desks will be used as workstations for temporary places to stand by while conducting experiments, not as office desks. The workstation desks are also at least 2 meters apart from lab users at any time in use. The equipment users move in the clockwise, one-way traffic to avoid unexpected physical contact. The worker locations and the traffic flow direction will be guided by taping on the ground. The 141A entrance door will be propped to let the door open all the time, to reduce the touch of the door handle. This lab has only one entrance door, so it cannot separate the entering and exit move of lab
The priority of lab accessing move will be given to lab-leaving-out personnel. **Incoming personnel must yield the move-right to outcoming personnel.**

**Figure 1. Lab 141 sketch.** The red circles indicate most frequently occupied workspace by the daily lab users of maximum 4 (the green small circles are the chair locations for workstation desks.), making sure that the users are always keeping the physical distancing away from each other. The workstation desk is used only for a temporary place to stand by while conducting experiments.

---

**Section 4 – Engineering Controls**

6. **Cleaning and Hygiene**

Detail the cleaning and hygiene regimen required to be completed by HQP, research staff and the PIs for common areas/surfaces (Custodial has limitations on cleaning frequency, etc.).

Outline specific cleaning processes and schedule for high-touch equipment, specialized/sensitive equipment or other unique circumstances to your lab/workspace. Detail how and what types of cleaning products and disposal options you will provide. If possible, include cleaning stations/infrastructure on your lab photos/plan.
Table 2 lists the high-contact points that require cleaning and hygiene. When approved hard surface disinfectants are not available, a diluted bleach solution can be replaced to disinfect hard surfaces (https://www.canada.ca/en/public-health/services/publications/diseases-conditions/how-to-care-for-person-with-covid-19-at-home-advice-for-caregivers.html). Dr. Chae will prepare a 1000 ppm sodium hypochlorite disinfectant solutions using household bleach. This solution is used for disinfecting a solid surface where a higher-risk of virus exposure is possible, e.g. lab entrance door handles and common-use-facilities. The working procedures for producing and handling the solutions are described in Table 3 (https://www.ccohs.ca/oshanswers/chemicals/bleach.html). All of those procedures will be supervised by Dr. Chae. He will produce a small quantity of each solution every other days to keep its shelf-life. Lab users must clean and disinfect the working space surface before and after use. The high-contact points will be cleaned by Dr. Chae. The surface disinfecting solutions in spray bottles, hand soap, and hand sanitizer will be placed beside the entrance door and the sink table. Each bottle location will be designated by taping. They must be returned to its original place after being used. Anyone who comes in and leaves the lab must wash their hands using hand sanitizer and check it on the lab sign-in/out sheet located beside the lab entrance door (Form 1. Lab arrival/departure sanitization checklist). A sanitization checklist will be placed on every workbench in the lab (Form 2. Workbench sanitization checklist).

It is expected that paper towels might be in shortage of supply due to soaring demand from nationwide. Reusable fabric cloth will be used for surface cleaning; used/soiled cloth will be placed in a bleach solution container in the chemical fume hood. Dr. Chae will wash and dry the used cloth for reuse. The ready-to-use fabric cloth will be placed in a designated container beside the sink table. Paper towels will be required to use only for drying wet hands after hand washing.

### Table 2. List of high-contact point in lab 141.

<table>
<thead>
<tr>
<th>High-contact point</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrance door knob</td>
<td>Lab Entrance</td>
</tr>
<tr>
<td>Chemical fume hood door knob</td>
<td>Chemical room entrance</td>
</tr>
<tr>
<td>Shared printer</td>
<td>Next to April’s desk</td>
</tr>
<tr>
<td>Optical microscope</td>
<td>Vibration-free table</td>
</tr>
<tr>
<td>Balance</td>
<td>Chemical room</td>
</tr>
<tr>
<td>Chemical cabinets</td>
<td>Chemical room</td>
</tr>
</tbody>
</table>

### Table 3. The mixing ratio of diluted bleach solutions for surface disinfecting purposes only, using household bleach (5-6% sodium hypochlorite*).

<table>
<thead>
<tr>
<th>Sodium hypochlorite</th>
<th>D-I water</th>
<th>Bleach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 ppm (0.1 %) for disinfecting solid surface</td>
<td>100 mL</td>
<td>2 mL</td>
</tr>
</tbody>
</table>

* A diluted bleach solution has a shelf life of 24 hours.
* Nitrile rubber gloves and a face mask must be worn when handling a bleach solution.
* If sodium hypochlorite comes in contact with other cleaners containing ammonia or chlorine compounds, fatal levels for ammonia gas or chlorine gas can be produced. Do not mix a diluted bleach solution with other cleaning agents.
* In case of exposure to eyes or skin, flush the area for 15 to 20 minutes with running water.
* Sodium hypochlorite is the chemical ingredient name of bleach. Simply, bleach is a diluted aqueous sodium hypochlorite solution. It is known to be one of the best effective agents to disinfect biological
COVID-19 Lab Safety Plan Brimacombe Template 2 June

substances (https://cmr.asm.org/content/cmr/10/4/597.full.pdf).

<table>
<thead>
<tr>
<th>Name</th>
<th>Supervisor</th>
<th>Date</th>
<th>Start time</th>
<th>End time</th>
<th>Surface clean</th>
<th>Monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form 2. A sanitization checklist. Please complete this form before and after your workbench use.

7. Equipment Removal/Sanitation
Detail your appropriate removal of unnecessary tools/equipment/access to areas and/or adequate sanitation for items that must be shared that may elevate risk of transmission, both research-related (i.e. instruments, tools) and general (i.e. coffee makers in break rooms)

There is no item to be removed.

8. Safety Infrastructure Requests (Partitions, Plexiglass installation)
Describe any needs for safety infrastructure i.e. physical barriers, plexiglass installation required for your lab/workspace and if possible include them on your photos/room plan.

Any physical barrier safety infrastructure is not required in lab 141.

Section 5 – Administrative Controls

9. Communication & Training Strategy for Employees
Describe how you (the PI) have or will communicate the risk of exposure to COVID-19 in the workplace to your HQP/research staff/other employees and the safety controls in place to reduce such risk.

Detail how you will ensure that all employees successfully complete the Preventing COVID-19 Infection in the Workplace online training and orientation to your specific safety plan

Every Monday at the group online meeting, I announce new information regarding nationwide and global COVID-19 pandemic. Our lab’s special HQP responding to the prevention of COVID-19 infection in the workplace, Dr. Chae, also briefs new updates on the lab reopening safety and maintenance. Dr. Chae published an AFML lab-specific safety guideline and protocols for the Phase I resumption of research and gave a safety training presentation to all our lab members returning to work in June. He will monitor how the guidelines proposed by UBC, BC provincial government, and AFML will be followed by the lab members and report concerns and extra-caution to the members every Monday. Emergency notes and announcements will be posted in the shared Google Sheet (one centralized online posting system, including emergency contact, daily workspace occupancy, PPE inventory, etc). AFML established a remote working policy, as described below.

-----------------------------------------------------------------------------------------------------------------------------

Remote working policy
• Work remotely as much as possible for the tasks you can do out of the campus, e.g. literature review, data processing and analysis, manuscript writing.
• Stay home at least 10 days if you feel sick and have been exposed to sick people even with mild symptoms. e.g. fever, cough, sneezing, phlegm, muscle ache, nasal congestion. There have been instances of COVID-19 transmission from a person with mild symptoms and early development stages.

**If you are sick with getting worse respiratory symptoms**
• Self-isolate for a minimum of 10 days.
• Call 8-1-1 anytime to talk to a nurse at Health LinkBC and get advice about how you are feeling and what to do next.
• If it becomes harder to breathe, you cannot drink anything or feel much worse, seek urgent medical care at an urgent care clinic or emergency department.
• If you have chest pains, difficulty breathing, or severe bleeding, it could be a life-threatening emergency. Call 9-1-1 or the local emergency number immediately.
• If leaving your home for medical care, call ahead and tell the clinic you are coming in and that you have symptoms of COVID-19.

(see from BC CDC website [http://www.bccdc.ca/health-info/diseases-conditions/covid-19/about-covid-19/if-you-are-sick](http://www.bccdc.ca/health-info/diseases-conditions/covid-19/about-covid-19/if-you-are-sick))

**Emergency contact information**
- If you need contact for an emergency, please call or send emails to Dr. Bahi and Dr. Chae.
  - Lab Manager: Dr. Addie Bahi, addie.bahi@ubc.ca, 604-440-3969
  - Research Scientist: Dr. Taesik Chae, taesik.chae@ubc.ca, 604-719-6953

**10. Signage**
Detail the type of signage you will utilize and how it will be placed (e.g. floor decals denoting one-way walkways and doors, 'cleanliness state' of equipment/instruments, hand-washing guidance). See [WorksafeBC](https://www.worksafebc.ca) for signage guidelines and templates.

Lab users move in a clockwise, one-way direction, and floor taping arrows guide the flow. The workspace of each equipment is designated by taping on the ground (2m-side-length squares). Large equipment which needs frequent surface touch will have a Post-It system to let others know that it is cleaned and ready-to-use (clean vs. clean-required). Hand washing guidance will be posted on the wall of the sink.

**11. Emergency Procedures & Reporting**
Pis must ensure that all employees entering the lab should be aware of the Building Emergency Response Plan (BERP) and have access to it. If applicable, detail your strategy to amend your lab’s emergency response plan procedures during COVID-19.


The Brimacombe BERP will be available in the new lobby and will be posted on the website.

A copy of the Brimacombe BERP is placed in the lab, and each member has its soft copy.

**12. Monitoring**
Describe how you will monitor your workplace (supervisor, departmental safety representative, other) and update your plans as needed; detail how employees can raise safety concerns (e.g. via the
Dr. Chae and Dr. Bahi will lead the AFML team on monitoring lab activities regarding the COVID-19 regulations.

General lab supervision will be carried out by the principal investigator, Prof. Ko, and the lab manager, Dr. Addie Bahi.

However, when needed for support or advice, they will call on the 1st-floor warden (Sebastian Medrano), the high head supervisor, Debanga Kashyap, High head Warden, Harish Gautam, the building manager/Safety Committee co-chair (Gary Lockhart, AMPEL), and the building operation manager (Pinder Dosanjh, SBQMI).

Safety concerns in lab 141 will be raised to the principal investigators, the lab manager, and the COVID-19 special HQP, Dr. Chae, via email, phone call, and the weekly lab meeting.

---

**Section #6 – Personal Protective Equipment (PPE)**

UBC has a [central process for purchasing PPE](#). Describe what PPE you will require for your lab.

<table>
<thead>
<tr>
<th>#</th>
<th>Type of PPE</th>
<th>Activity and PPE Use Rationale</th>
</tr>
</thead>
</table>
| 1  | Nitrile gloves | - Cleaning high contact points to protect hands from bleach solution in combination with a face mask.  
- Current inventory: XS (1 box), S (2 boxes), M (1 box), L (4 boxes), XL (5 boxes)  
- Nitrile gloves will be supplied through the Materials Engineering Store and UBC central process for purchasing PPE.  
- Soiled nitrile gloves will be collected in a plastic bag and disposed into a garbage bag. |
| 2  | Hand sanitizer | - Every time entering the lab 141  
- Current inventory: 6 litters  
- Hand sanitizer will be supplied through online and offline purchasing. |
| 3  | Disinfectant wipes | - Cleaning and disinfecting solid surface when disinfecting solution spray cannot be used.  
- Current inventory: 1 roll  
- Disinfectant wipes will be supplied through online and offline purchasing. |

**Researcher Agreement**

Please have all those who will enter your lab during Phase I (including the PI if applicable) sign the statement on the next page. Keep a copy in the lab as a record. PIs should sign the page that follows the researcher agreement.
SAFE-RETURN-TO-WORK AGREEMENT
THE BRIMACOMBE BUILDING

Signature line for researcher (faculty, student, research staff, post-doc etc.) and administrative staff acknowledgment

I, Addie Bahi, have read and understand the additional precautions being taken during this time, as outlined in the Brimacombe Phase I Safety Plan, my lab’s Workspace Safety Plan. I have read and agree to abide by the safety plans, and to undergo training that will be required by UBC once it is put in effect (we anticipate video training that all those entering the building will be required to complete):

RESEARCHER/ SIGNATURE
or STAFF

DATE
____ June 17, 2020_________

SUPERVISOR/ SIGNATURE
or DIRECTOR in case of PIs

DATE
______ June 17, 2020_________

Signed

Supervisor is to keep a copy of this document in the lab and/or accessible electronically from the lab, in case of Local Safety Committee, SRS or WorkSafe BC audit.
Acknowledgement
I confirm that this Safety Plan has been shared with all workers (HQP, research personnel, etc.) who will be accessing this space both through email and will be made available as a shared document. For shared labs, please add the number of signature lines needed to cover all PIs who intend to have researchers use the space, e.g. including for students who will visit for a short period of time to use an instrument.

<table>
<thead>
<tr>
<th>Date</th>
<th>June 17, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Frank K. Ko</td>
</tr>
<tr>
<td>(Manager or Supervisor)</td>
<td>Professor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>(Additional PI)</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>(Additional PI)</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td></td>
</tr>
</tbody>
</table>

Director Approval

<table>
<thead>
<tr>
<th>Name</th>
<th>Daan Maijer, Dept. Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>June 20, 2020</td>
</tr>
<tr>
<td>Signature</td>
<td>Signed</td>
</tr>
</tbody>
</table>

Department Head Approval

<table>
<thead>
<tr>
<th>Name</th>
<th>John D Madden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>18 June 2020</td>
</tr>
<tr>
<td>Signature</td>
<td>Signed</td>
</tr>
</tbody>
</table>
Appendix

Please attach any maps, pictures, departmental policies or risk assessments applicable UBC Guidance documents, where necessary, and other regulatory requirements referred to in document.

AMP埃尔 first-floor plan
Lab 141 floor plan and location of HQP workstation